Journal of Cancer Research and Experimental Oncology Volume 9 Number 1, May 2017 ISSN 2141-2243

ABOUT JCREO

The Journal of Medical Laboratory and Diagnosis (JMLD) is published monthly (one volume per year) by Academic Journals.

The Journal of Cancer Research and Experimental Oncology (JCREO) is an open access journal that provides rapid publication (monthly) of articles in all areas of the subject such as mammography, chemotherapy, cancer prevention, advances in monoclonal antibody therapy etc.

Contact

Editorial Office:	jcreo@academicjournals.org
Desk:	helpdesk@academicjournals.org
Website: Submit manuscript online	http://www.academicjournals.org/journal/JCREO http://ms.academicjournals.me/

Editors

Prof. Rodica-Mariana I.O.N., ICECHIM, Bucharest, Romania.

Dr. Tommy Richard Sun-Wing Tong, Department of Pathology, Montefiore Medical Center of Albert Einstein, College of Medicine, USA.

Dr. Gelu Osian, University of Medicine and Pharmacy "Iuliu Hatieganu", Department of Surgery, Romania.

Dr. Asmaa Gaber Abdou, Department of Pathology, Faculty of Medicine, Menofiya University, Egypt.

Dr. Hamid Jafarzadeh, Mashhad Faculty of Dentistry, Iran.

Dr. Imtiaz Wani, S.M.H.S Hospital, India.

Dr. Laxminarayana Bairy K., Kasturba Medical College Manipal-576104, India.

Dr. Luca Lo Nigro, Center of Pediatric Hematology Oncology, University of Catania, Catania, Italy.

Dr. Mojgan Karimi Zarchi, Shahid Sadoughi University of Medical Science, Iran. **Dr. Pritha Ghosh,** Indian Institute of Chemical Biology, India.

Dr. Pritha Ghosh, Indian Institute of Chemical Biology, India.

Dr. Sanjay Mishra, Department of Biotechnology, College of Engineering and Technology, (Affiliated to U.P. Technical University, Lucknow), IFTM Campus, Delhi Road, Moradabad 244 001, Uttar Pradesh, India.

Prof. Viroj Wiwanitkit, Wiwanitkit House, Bangkhae, Bangkok Thailand 10160, Thailand.

Dr. Komolafe Akinwumi Oluwole, Ladoke Akintola University of Technology Teaching Hospital, Osogbo, Osun state, Nigeria.

Dr. Debmalya Barh, Institute of Integrative Omics and Applied Biotechnology (IIOAB), India.

Dr. George Ntaios, AHEPA Hospital, Aristotle University of Thessaloniki, Greece.

Prof. Heidi Abrahamse, Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, South Africa.

Instructions for Author

Electronic submission of manuscripts is strongly encouraged, provided that the text, tables, and figures are included in a single Microsoft Word file (preferably in Arial font).

The **cover letter** should include the corresponding author's full address and telephone/fax numbers and should be in an e-mail message sent to the Editor, with the file, whose name should begin with the first author's surname, as an attachment.

Article Types

Three types of manuscripts may be submitted:

Regular articles: These should describe new and carefully confirmed findings, and experimental procedures should be given in sufficient detail for others to verify the work. The length of a full paper should be the minimum required to describe and interpret the work clearly.

Short Communications: A Short Communication is suitable for recording the results of complete small investigations or giving details of new models or hypotheses, innovative methods, techniques or apparatus. The style of main sections need not conform to that of full-length papers. Short communications are 2 to 4 printed pages (about 6 to 12 manuscript pages) in length.

Reviews: Submissions of reviews and perspectives covering topics of current interest are welcome and encouraged. Reviews should be concise and no longer than 4-6 printed pages (about 12 to 18 manuscript pages). Reviews are also peer-reviewed.

Review Process

All manuscripts are reviewed by an editor and members of the Editorial Board or qualified outside reviewers. Authors cannot nominate reviewers. Only reviewers randomly selected from our database with specialization in the subject area will be contacted to evaluate the manuscripts. The process will be blind review.

Decisions will be made as rapidly as possible, and the journal strives to return reviewers' comments to authors as fast as possible. The editorial board will re-review manuscripts that are accepted pending revision. It is the goal of the JPP to publish manuscripts within weeks after submission.

Regular articles

All portions of the manuscript must be typed double-spaced and all pages numbered starting from the title page.

The **Title** should be a brief phrase describing the contents of the paper. The Title Page should include the authors' full names and affiliations, the name of the corresponding author along with phone, fax and E-mail information. Present addresses of authors should appear as a footnote.

The **Abstract** should be informative and completely self-explanatory, briefly present the topic, state the scope of the experiments, indicate significant data, and point out major findings and conclusions. The Abstract should be 100 to 200 words in length. Complete sentences, active verbs, and the third person should be used, and the abstract should be written in the past tense. Standard nomenclature should be used and abbreviations should be avoided. No literature should be cited.

Following the abstract, about 3 to 10 key words that will provide indexing references should be listed.

A list of non-standard **Abbreviations** should be added. In general, non-standard abbreviations should be used only when the full term is very long and used often. Each abbreviation should be spelled out and introduced in parentheses the first time it is used in the text. Only recommended SI units should be used. Authors should use the solidus presentation (mg/ml). Standard abbreviations (such as ATP and DNA) need not be defined.

The **Introduction** should provide a clear statement of the problem, the relevant literature on the subject, and the proposed approach or solution. It should be understandable to colleagues from a broad range of scientific disciplines.

Materials and methods should be complete enough to allow experiments to be reproduced. However, only truly new procedures should be described in detail; previously published procedures should be cited, and important modifications of published procedures should be mentioned briefly. Capitalize trade names and include the manufacturer's name and address. Subheadings should be used. Methods in general use need not be described in detail. **Results** should be presented with clarity and precision. The results should be written in the past tense when describing findings in the authors' experiments. Previously published findings should be written in the present tense. Results should be explained, but largely without referring to the literature. Discussion, speculation and detailed interpretation of data should not be included in the Results but should be put into the Discussion section.

The Discussion should interpret the findings in view of the results obtained in this and in past studies on this topic. State the conclusions in a few sentences at the end of the paper. The Results and Discussion sections can include subheadings, and when appropriate, both sections can be combined.

The Acknowledgments of people, grants, funds, etc should be brief.

Tables should be kept to a minimum and be designed to be as simple as possible. Tables are to be typed doublespaced throughout, including headings and footnotes. Each table should be on a separate page, numbered consecutively in Arabic numerals and supplied with a heading and a legend. Tables should be self-explanatory without reference to the text. The details of the methods used in the experiments should preferably be described in the legend instead of in the text. The same data should not be presented in both table and graph form or repeated in the text.

Figure legends should be typed in numerical order on a separate sheet. Graphics should be prepared using applications capable of generating high resolution GIF, TIFF, JPEG or Powerpoint before pasting in the Microsoft Word manuscript file. Tables should be prepared in Microsoft Word. Use Arabic numerals to designate figures and upper case letters for their parts (Figure 1). Begin each legend with a title and include sufficient description so that the figure is understandable without reading the text of the manuscript. Information given in legends should not be repeated in the text.

References: In the text, a reference identified by means of an author's name should be followed by the date of the reference in parentheses. When there are more than two authors, only the first author's name should be mentioned, followed by 'et al'. In the event that an author cited has had two or more works published during the same year, the reference, both in the text and in the reference list, should be identified by a lower case letter like 'a' and 'b' after the date to distinguish the works.

Examples:

Cole (2000), Steddy et al. (2003), (Kelebeni, 1983), (Bane and Jake, 1992), (Chege, 1998; Cohen, 1987a,b;Tristan, 1993,1995), (Kumasi et al., 2001)

References should be listed at the end of the paper in alphabetical order. Articles in preparation or articles submitted for publication, unpublished observations, personal communications, etc. should not be included in the reference list but should only be mentioned in the article text (e.g., A. Kingori, University of Nairobi, Kenya, personal communication). Journal names are abbreviated according to Chemical Abstracts. Authors are fully responsible for the accuracy of the references.

Examples:

Ansell J, Hirsh J, Poller L (2004). The pharmacology and management of the vitamin K antagonists: the Seventh ACCP Conference on Antithrombotic and Thrombolytic. Therapy 126:204-233

Ansell JE, Buttaro ML, Thomas VO (1997). Consensus guidelines for coordinated outpatient oral anti coagulation therapy management. Ann. Pharmacother. 31:604-615

Charnley AK (1992). Mechanisms of fungal pathogenesis in insects with particular reference to locusts. In: Lomer CJ, Prior C (eds), Pharmaceutical Controls of Locusts and Grasshoppers: Proceedings of an international workshop held at Cotonou, Benin. Oxford: CAB International. pp 181-190.

Jake OO (2002). Pharmaceutical Interactions between *Striga hermonthica* (Del.) Benth. and fluorescent rhizosphere bacteria Of *Zea mays*, L. and *Sorghum bicolor* L. Moench for Striga suicidal germination In *Vigna unguiculata*. PhD dissertation, Tehran University, Iran.

Furmaga EM (1993). Pharmacist management of a hyperlipidemia clinic. Am. J. Hosp. Pharm. 50: 91-95

Short Communications

Short Communications are limited to a maximum of two figures and one table. They should present a complete study that is more limited in scope than is found in full-length papers. The items of manuscript preparation listed above apply to Short Communications with the following differences: (1) Abstracts are limited to 100 words; (2) instead of a separate Materials and Methods section, experimental procedures may be incorporated into Figure Legends and Table footnotes; (3) Results and Discussion should be combined into a single section.

Proofs and Reprints: Electronic proofs will be sent (email attachment) to the corresponding author as a PDF file. Page proofs are considered to be the final version of the manuscript. With the exception of typographical or minor clerical errors, no changes will be made in the manuscript at the proof stage. **Fees and Charges**: Authors are required to pay a \$550 handling fee. Publication of an article in the Journal of Cancer Research and Experimental Oncology (JCREO) is not contingent upon the author's ability to pay the charges. Neither is acceptance to pay the handling fee a guarantee that the paper will be accepted for publication. Authors may still request (in advance) that the editorial office waive some of the handling fee under special circumstances.

Copyright: © 2017, Academic Journals.

All rights Reserved. In accessing this journal, you agree that you will access the contents for your own personal use but not for any commercial use. Any use and or copies of this Journal in whole or in part must include the customary bibliographic citation, including author attribution, date and article title.

Submission of a manuscript implies: that the work described has not been published before (except in the form of an abstract or as part of a published lecture, or thesis) that it is not under consideration for publication elsewhere; that if and when the manuscript is accepted for publication, the authors agree to automatic transfer of the copyright to the publisher.

Disclaimer of Warranties

In no event shall Academic Journals be liable for any special, incidental, indirect, or consequential damages of any kind arising out of or in connection with the use of the articles or other material derived from the JCREO, whether or not advised of the possibility of damage, and on any theory of liability.

This publication is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, the implied warranties of merchantability, fitness for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications does not imply endorsement of that product or publication. While every effort is made by Academic Journals to see that no inaccurate or misleading data, opinion or statements appear in this publication, they wish to make it clear that the data and opinions appearing in the articles and advertisements herein are the responsibility of the contributor or advertiser concerned. Academic Journals makes no warranty of any kind, either express or implied, regarding the quality, accuracy, availability, or validity of the data or information in this publication or of any other publication to which it may be linked.

Journal of Cancer Research and Experimental Oncology

Table of Contents: Volume 9 Number 1 May 2017

ARTICLE

Retrospective study on gastrointestinal tract tumors in humans in Zaria, Kaduna State, Nigeria

Mbuk E. U. and Amber E. I.

1

academicJournals

Vol. 9(1), pp. 1-6, May 2017 DOI: 10.5897/JCREO2017.0146 Article Number: AB0BAA364455 ISSN 2141-2243 Copyright © 2017 Author(s) retain the copyright of this article http://www.academicjournals.org/JCREO

Journal of Cancer Research and Experimental Oncology

Full Length research Paper

Retrospective study on gastrointestinal tract tumors in humans in Zaria, Kaduna State, Nigeria

Mbuk E. U.¹* and Amber E. I.²

¹Equitation Department, Nigerian Defence Academy, PMB 2109, Kaduna State, Nigeria. ²Department of Surgery and Medicine, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Kaduna State, Nigeria.

Received 3 April, 2017: Accepted 8 May, 2017

A retrospective study of gastrointestinal tract (GIT) tumors of humans in Zaria was carried out to determine the prevalence rates. Of the 124 human cases recorded in Ahmadu Bello University Teaching Hospital (ABUTH) Zaria, 39 (31.45%) had upper GIT tumors while 42 (33.87%) had tumors located in the lower GIT. All age groups were affected. The risk for developing tumors increased with age in cases studied. The affected age groups varied from 0.75 to 89 years with median of 44.5 years. Males were over represented with sex ratio of 1.5:1. Adenocarcinomas and squamous cell carcinomas were predominant.

Key words: Gastrointestinal tract, tumors, humans, Zaria.

INTRODUCTION

Cancer is a group of diseases in which normal cells undergo uncontrolled growth. It is characterized by a loss of control of one or more of the specific control mechanisms that regulate the activities of a normal cell division and metabolic processes (Lochhead et al., 2015). All ages are affected in humans, with the disease more prevalent in the aged. Cancer may affect any organ or tissue (Suggars, 2000; Ducimetière et al., 2011).

It has been established that cancer cases are higher in males than females (Huguley, 1999; Yan et al., 2008). Evidence from studies of populations that migrated from one geographic area to another suggests that these variations are due to differences in lifestyle rather than ethnic origin. This is consistent with other evidence that most cancers are predominantly related to environmental causes rather than hereditary, although the two factors interact (Polk and Peek, 2010; Rugge et al., 2013; Uehara et al., 2013). Cancer is the second most common cause of mortality in the western world after cardiovascular disease (Xiong et al., 2014; Assumpção et al., 2015).

While incidences of tumors are well documented in other parts of the world, this is not the case in Nigeria. This study is one in a series aimed at documenting hospital based incidence of gastrointestinal tract tumors with the objective of determining the prevalence rates and predisposing factors in the country.

Classification of tumors

There are broadly two classifications of tumors – behavioural and histological. This classification aids

*Corresponding author. E-mail: uduakem@yahoo.com. Tel: +2348037862887.

Author(s) agree that this article remain permanently open access under the terms of the <u>Creative Commons Attribution</u> License 4.0 International License

and diagnosis, prognosis therapy. Behavioural classification distinguishes between benign and malignant tumors. Benign tumors are generally slow growing expansive masses encapsulated with distinct margins (Rugge et al., 2013; Uehara et al., 2013). Malignant tumors are usually rapidly growing, invading local tissues and spreading to distant sites metastasizing (Nguyen et al., 2013).

Histological classification group tumors according to tissues of origin and cell types but some tissues in anaplastic state make tissue or organ of origin of some tumors uncertain (Yang et al., 2012; Kauppila et al., 2013).

Both classification pose problems. Some tumors with benign nomenclature are obviously malignant, for example; lymphoma, myeloma. Problems of classifying neuroendocrine tumors with diverse tissues of origin exists (Polk and Peek, 2010; Xiong et al., 2014). There exist also tumors of mixed cell phenotype which have posed a problem of histological classification, for example; tumors of salivary glands, teratomata also called "Monsters" (Irrazábal et al., 2014; Assumpção et al., 2015).

Causes of cancer

Several causes of cancer have been advanced based purely on positive associations. These ranges from dietary habits, social habits, environmental factors, infectious agents like viruses, bacteria and other parasites have been associated with most cancers (Cuzick, 2001; Yan et al., 2008; Agarwal et al., 2012). Chemicals. hormones, X-rays and ultra-violent irradiations have been positively known to cause tumors (Griffith, 2001). There is now substantive proof that cancer is a genetic disease but differs from other genetic diseases by the proof that; it arises not from germ-line mutation but somatic mutations (Irrazábal et al.,, 2014; Halland et al., 2015).

It has been postulated that several sequential mutations are required for individual cancers to arise (Yang et al., 2000). This explains why tumors occur predominantly among aged humans (Huguley, 1999; Newschaffer, 2001). Current theory of oncogenesis links the existence of cancer genes known as oncogenes to carcinogenesis and in their normal forms; protoncogenes pose no problems (Grimmig et al., 2015). However, in mutated forms, they behave uncontrollably in tissue function and tissue formation. Thus, most of the previously observed causes of cancer are now known to act as either; initiators or promoters of malignant transformation (Pisters et al., 2001; Tsukamoto et al., 2001). Cancer is known to progress from healthy state through a precancerous, preclinical and clinical state. The duration of the precancerous is long and variable leading to the state of clinical cancer diagnosis. Thus

oncogenesis is a multistage process with both extrinsic and intrinsic factors acting as initiators and promoters to transform normal cells to neoplasia. The process of oncogenesis is monoclonal, multi-causal and multistage. A carcinogen may pose some degree of risk to a population at any dose by exerting effects that may be addictive with those which account for spontaneous baseline incidence of cancer (Perera, 2000; Yang et al., 2014).

Tumor diagnosis

Clinical diagnosis usually begins with a thorough history and physical examination, including inspection, both visually and manually, of all accessible areas of the body, especially the skin, neck, breast, abdomen, testicles, and the areas that contain lymph nodes. It specifically includes examination of body openings, particularly rectal examination for cancers of the rectum or prostate and pelvic examination for cancers of the cervix or uterus (Ducimetière et al., 2011). Laboratory diagnosis usually done using a small amount of blood to test for genes believed to cause certain cancers; medical imaging techniques that view internal areas of the body, a physician can biopsy a tumor in almost any part of the body using a thin, flexible needle. Also, endoscopy, scintigraphy, computed tomography, magnetic resonance imaging, test of blood in the stool (Haemoccult), sigmoidoscopy to find benign polyps and measurement of tumor specific antigens (London, 2000; Liebermann, 2001; Assumpção et al., 2015).

Tumor treatment

Treatment is usually by removal of malignant cells by surgical operation then subsequently followed by radiotherapy and chemotherapy if the cancer extends into neighbouring tissues that cannot be removed or distant metastases are already present (Theon, 2000; Moore and Frimberger, 2000; Geh et al., 2001; Gutt, 2001; Todoroki, 2001). Also, hormone therapy, immunotherapy, gene therapy and a drug – Endostatin used to shrink tumors by suppressing their ability to produce capillaries and interleukin 2 used to stimulate a patient's lymphokine-activated killer lymphocytes (LAK cells) (Biesterfeld et al., 2001; Cuzick, 2001; Griffith, 2001).

Gastrointestinal tract tumors

Oral tumors

Carcinoma of the tongue is mainly a male disease but there is increasing incidence in females in some countries (S.E. Asia and India). It is estimated to account for 20% of all malignancies. Most patients are 50 to 70 years. Predisposing conditions are sepsis, syphilis, smoking, especially of pipe and cigar, chewing of betelnut and tobacco, marijuana and spices (Irrazábal et al., 2014). The risk is 15 times greater in alcohol-drinking smokers. Benign lip tumors are hemangioma and lymphangioma which cause macrocheilia. Papillomas also exist. Lip carcinomas are common in Caucasians and accounts for 25% of mouth cancer with 98% of the patients being males. Salivary gland tumors have an estimated incidence of 0.25 to 2.5 per 100,000 persons and accounts for 3% of all tumors in Caucasians, with 84% principally in the parotid gland (Yang et al., 2012; Kauppila et al., 2013; Hardefeldt et al., 2014).

Gastric tumors

Benign oesophageal tumors include papilloma, lipoma, leiomyoma found accidentally on barium swallow presenting as dysphagia and neurofibroma which makes up 3% of stomach tumors. Cavernous hemangiomas rarely occur and cause haematemesis. Malignant tumors are leiomyosarcoma and carcinoma with the most vulnerable age group in Africa as 40 to 60 years with males predominantly affected due to the consumption of large quantities of alcohol made from maize (East Africa), smoking, traces of nitrosamines in alcoholic drinks brewed in metal drums, also linked to the intake of tannic acid and certain dietary deficiencies (Agarwal et al., 2012; Hardefeldt et al., 2014). Carcinoid tumor of the appendix may obstruct the human and become a mucocele which is slow growing without metastases; ages affected are 16 to 70 with an average of 34 in both sexes. 20% of patients with pernicious anaemia may develop it with signs of bleeding and epigastric pain. Carcinoma is the commonest malignant gastrointestinal tumor in the world, commonly in the 40 to 70 age groups with the highest prevalence in 55 to 65 age groups. Causes are excessive intake of smoked fish, probably because of benzopyrene a carcinogen resulting from the smoking process, nitrosamines, Helicobacter pylori infection, remnant stump of partial gastrectomy and a lack of fruit and vegetables (Polk and Peek, 2010; Rugge et al., 2013; Uehara et al., 2013; Xiong et al., 2014; Assumpção et al., 2015).

Intestinal tumors

Adenoma and leiomyoma cause bleeding and obstruction in the duodenum, while, lymphomas cause abdominal pain, bleeding, intestinal obstruction and obstructive jaundice. Carcinomas of the large bowel are more common in western countries and are the second commonest cause of death among malignant diseases next to cancers of the lungs (Luo et al., 2014). Large bowel cancer is associated with high fat, low fiber diets and inextricably linked to heavy meat consumption (Lecouteur and Withrow, 2007; Agarwal et al., 2012; Nojiri et al., 2013; Rogler, 2014).

Hepatic tumors

Most primary cancers of the liver are hepatocellular carcinomas and usually arise in a cirrhotic liver caused by hepatitis B virus (HBV) infection or alcohol consumption (Yang et al., 2000; Yamada and Alpers, 2009; Mazzanti et al., 2016).

MATERIALS AND METHODS

Records from Pathology Department of the Faculty of Medicine, Ahmadu Bello University Teaching Hospital, Zaria, Nigeria were retrospectively reviewed for diagnoses of GIT tumors over a three year period (1999-2001). Only cases with complete histologic diagnosis were used for the study. Data was collected for age, sex and histopathologic diagnosis of the tumor types. Other GIT associated tumors were also reviewed for record purposes only. Only malignant tumors were recorded in this study.

RESULTS

On Table 1, one hundred and twenty-four cases of GIT tumors were reviewed with the median age of 44.5 years recorded. The age range of 26 to 65 had the highest prevalence of 72.6% (90). The male:female ratio was 1.5:1 with 60.5% (75) males diagnosed with GIT tumors as against 39.5% (49) females. There was no appreciable difference between upper and lower GIT tumor numbers.

Table 2 showed, lower GIT tumors had the highest prevalence of 33.87% (42) while upper GIT tumors came second highest with 31.45% (39); most of these were in the oral cavity and majority of the cases were seen from 40 years and above.

On Table 3, nine colonic and 21 rectal tumors were recorded. Hodgkins and non-hodgkins lymphoma were associated predominantly with upper GIT tract.

DISCUSSION

In this study, a total of 124 cases of GIT tumors were reviewed with the median age of 44.5 years recorded. This age falls below the tumor age of 55 in western civilization and could be purely because of the lower life expectancy ages in third world countries. The age range of 26 to 65 recorded the highest prevalence of 72.6% (90) during the study period (1999-2001). This agrees with the report that for decades in the United States the number of patients within this age range with GIT cancer has risen rapidly and steadily, from 298,000 in 1965 to more than 564,800 in 1998 (Newschaffer, 2001).

Total no of affected persons	124		
Age range (years)	0.75 - 89		
Median age	44.5		
No of affected males	75 (60.5%)		
No of affected females	49 (39.5%)		
Male: Female	1.5: 1		
Age range:			
<25	24 (19.4%)		
26-65	90 (72.5%)		
>65	10 (8.1%)		

 Table 1. Patient characteristics of GIT tumor as reported at ABUTH Zaria from 1999 to 2001.

Table 2. Percentages of GIT tumor as reported at ABUTH, Zaria.

Site affected	No. of cases (%)	
Upper gastrointestinal tract	39 (31.45)	
Lower gastrointestinal tract	42 (33.87)	
*Associated gastrointestinal tract organs	43 (34.68)	
Total	124 (100)	

*Noted for the study record purpose only.

However, these figures are affected by increasing population and the growing percentage of middle aged adults and older adults, who traditionally have a higher incidence of cancer. Age is a major risk factor for bowel cancer where 95% of cases occur in the United States after the age of 40; only 1% is diagnosed before 20 years and 5% before 40 years. Younger adults are more at risk if there is a family history of the disease (Rustgi and El-Serag, 2014). The result indicates that like other cancers elsewhere, it is primarily an old age associated disease.

The ratio of male: female in this study was 1.5: 1 (Table 1), showing that 60.5% (75) males were diagnosed with GIT tumors as against 39.5% (49) females. This agrees with the findings of Newschaffer (2001) and may be explained by the fact that men are more adventurous moving and eating a variety of risk factors indicating that this could be as a result of lifestyle of the patients geographically, as more males smoke cigarette and consumed alcohol which are predisposing factors. Although, this does not agree with the report from South East Asia and India which have increasing incidence in females where older women smoke pipe, chew betelnut and tobacco, marijuana and spices (Brooks et al., 2009; Islami et al., 2009; Shigaki et al., 2012). In the United Kingdom, the male:female ratio is approximately the same as there are about 31,500 new cases annually (15,700 male and 15,800 female) and 18,100 deaths (9,037 men and 9,063 women), the reason being that both males and females are exposed to the same predisposing factors for example, occupational factors and lifestyles (Suggars, 2000). There was no appreciable difference between upper and lower GIT tumor numbers possibly due to the common factors initiating and promoting tumors in these sites.

Worldwide, the incidence of cancer varies enormously among different geographic areas. The death rate from all cancers in males is 311 per 100,000 in Luxembourg (the highest) as compared to 38 in El Salvador (the lowest). For women it is 175 in Denmark and 49 in El Salvador. The figures for the United States are 163 per 100,000 men and 110 per 100,000 women. For particular cancers, the difference between countries may be as high as 40 fold (Pimentel-Nunes et al., 2013). Evidence from studies of populations that migrated from one geographic area to another suggests that these variations are due to differences in lifestyle rather than ethnic origin. This is consistent with other evidence that most cancers are predominantly related to environmental causes rather than hereditary, although the two factors interact.

Table 2 showed lower GIT tumors had the highest prevalence of 33.87% (42). The reason for the increase in the number of bowel cancer might be because it is not discovered early enough for cure as is the case in UK (Suggars, 2000). While Table 3 showed that, 9 colonic and 21 rectal tumors were recorded. In the developed countries, it is reputed that up to 20 times more people get bowel cancer compared with the rest of the world and about 66% of the differences could be due to the proportions of dietary fiber and fats in the diet (Rogler, 2014). The action of bacteria on some types of fiber Table 3. Distribution of GIT tumors as reported at ABUTH, Zaria.

Tumor location	Squamous cell carcinoma	Adeno carcinoma	Burkitt's lymphoma	Non-Hodgkin's lymphoma		
Upper gastrointestinal tract						
Buccal mucosa	6	5	2	-		
Palate	1	1	-	-		
Parotid gland	-	7	-	1		
Tongue	4	-	-	-		
Pharynx	2	-	-	-		
Oesophagus	3	-	-	-		
Stomach	-	6	-	-		
Lower gastrointestinal tra	act					
Duodenum	-	-	-	-		
Jejunum	-	-	-	-		
lleum	-	-	-	2		
Caecum	-	4	-	-		
Colon	-	9	-	-		
Rectum	3	21	-	-		
Anus	-	2	-	-		
Appendix	-	1	-	-		
Total	19	56	2	4		

releases certain fatty acids that are thought to stimulate the multiplication of cells lining the bowel. Some studies have shown that anything that make cells multiply more quickly may cause changes leading to tumors (Yamada and Alpers, 2009; Mazzanti et al., 2016).

Upper GIT tumors from this study (Table 2) came second highest with 31.45% (39); most of these were in the oral cavity. Majority of the cases were seen from 40 years and above and agrees with the findings of Agarwal et al. (2012). This could be as a result of easy contact with carcinogens like tobacco and betelnut chewing, consumption of alcohol, sepsis, syphilis, smoking especially of pipe and cigar, marijuana and spice which are common among the people of this region of the country.

Hodgkins and non-hodgkins lymphoma (Table 3), were shown to be associated predominantly with upper GIT tract. The reasons for these are not obvious but it is possible that, the small number of data collected is inadequate to explain this association.

Conclusion

This study shows that GIT malignancies can occur in all ages and both sexes in humans though the incidence is higher in men due to factors such as lifestyle and occupation.

CONFLICT OF INTERESTS

The authors have not declared any conflict of interests.

REFERENCES

- Agarwal A, Polineni R, Hussein Z, Vigoda I, Bhagat TD, Bhattacharyya S, Maitra A, Verma A (2012). Role of epigenetic alterations in the pathogenesis of Barrett's esophagus and esophageal adenocarcinoma. Int. J. Clin. Exp. Pathol. 5(5):382-96.
- Assumpção MB, Moreira FC, Hamoy IG, Magalhães L, Vidal A, Pereira A (2015). High-Throughput miRNA Sequencing Reveals a Field Effect in Gastric Cancer and Suggests an Epigenetic Network Mechanism. Bioinform. Biol. Insights 9:111-117.
- Biesterfeld S, Reus K, Bayer-Pietsch E, Mihalcea AM, Böcking A (2001). DNA image cytometry in the differential diagnosis of endocervical adenocarcinoma. Cancer 93(2):160-4.
- Brooks PJ, Enoch MA, Goldman D, Li TK, Yokoyama A (2009). The alcohol flushing response: an unrecognized risk factor for esophageal cancer from alcohol consumption. PLoS Med. 6:50.
- Cuzick J (2001). Is hormone replacement therapy safe for breast cancer patients? J. Natl. Cancer Inst. 93(10):733-734.
- Ducimetière F, Lurkin A, Ranchère-Vince D, Decouvelaere AV, Péoc'h M, Istier L, Chalabreysse P, Muller C, Alberti L, Bringuier PP, Scoazec JY, Schott AM, Bergeron C, Cellier D, Blay JY, Ray-Coquard I (2011). Incidence of sarcoma histotypes and molecular subtypes in a prospective epidemiological study with central pathology review and molecular testing. PLoS One 6(8):e20294.
- Geh IJ, Crellin AM, Glynne-Jones R (2001). Preoperative (neoadjuvant) chemoradiotherapy in oesophageal cancer, Br. J. Surg. 88(3):338-356.
- Griffith ST (2001). Inhibition of murine prostate tumor growth and activation of immunoregulatory cells with recombinant canary pox viruses. J. Natl. Cancer Inst. 93(13):998-1007.
- Grimmig T, Matthes N, Hoeland K, Tripathi S, Chandraker A, Grimm M, Moench R, Moll EM, Friess H, Tsaur I, Blaheta RA, Germer CT, Waaga-Gasser AM, Gasser M (2015). TLR7 and TLR8 expression increases tumor cell proliferation and promotes chemoresistance in human pancreatic cancer. Int. J. Oncol. 47:857-66.
- Halland M, Katzka D, Iyer PG (2015). "Recent developments in pathogenesis, diagnosis and therapy of Barrett's esophagus. World J. Gastroenterol. 21(21):6479-90.
- Hardefeldt HA, Cox MR, Eslick GD (2014). Association between human papillomavirus (HPV) and oesophageal squamous cell carcinoma: a

meta-analysis. Epidemiol. Infect. J. 142:1119-1137.

Huguley CM Jr (1999). Cancer Medicine. Encyclopedia pp. 875-877.

- Kauppila JH, Mattila AE, Karttunen TJ, Salo T (2013). Toll-like receptor 5 (TLR5) expression is a novel predictive marker for recurrence and survival in squamous cell carcinoma of the tongue. Br. J. Cancer 108:638-643.
- Islami F, Boffetta P, Ren JS, Pedoeim L, Khatib D, Kamangar F (2009). High-temperature beverages and foods and esophageal cancer risk a systematic review. Int. J. Cancer 125:491-524.
- Irrazábal T, Belcheva A, Girardin SE, Martin A, Philpott DJ (2014). The multifaceted role of the intestinal microbiota in colon cancer. Mol. Cell. 54:309-320.
- Liebermann D (2001). Wireless Endoscope. American Society for Gastrointestinal Endoscopy, 15.
- Lecouteur RA, Withrow SJ (2007). Withrow & MacEwen's Small Animal Clinical Oncology. In Elsevier Inc.
- Lochhead P, Chan AT, Nishihara R, Fuchs CS, Beck AH, Giovannucci E, Ogino S (2015). Etiologic field effect: reappraisal of the field effect concept in cancer predisposition and progression. Modern Pathol. 28:14-29.
- London C (2000). Tumor Biology. In Textbook of Veterinary Internal Medicine, Volume 1, 5th Edition, W. B. Saunders Company. pp. 434-439.
- Luo Y, Yu M, Grady WM (2014). Field cancerization in the colon: a role for aberrant DNA methylation? Gastroenterol. Rep. (Oxford Journals). 2(1):16-20.
- Mazzanti R, Arena U, Tassi R (2016). Hepatocellular carcinoma: where are we? World J. Exp. Med. 6:21-36.
- Moore SA, Frimberger AE (2000). Principles of Chemotherapy. In Textbook of Veterinary Internal Medicine. Volume 1, 5th Edition. W. B. Saunders Company. pp. 484-489.
- Newschaffer JC (2001). Causes of death in elderly prostate cancer patients and in a comparison non-prostate cancer cohort. J. Natl. Cancer Institute 93(13): 613-621.
- Nguyen TL, Khurana SS, Bellone CJ, Capoccia BJ, Sagartz JE, Kesman RA Jr, Mills JC, DiPaolo RJ (2013). Autoimmune gastritis mediated by CD4+ T cells promotes the development of gastric cancer. Cancer Res. 73:2117-2126.
- Nojiri K, Sugimoto K, Shiraki K, Tameda M, Inagaki Y, Kusagawa S, Ogura S, Tanaka J, Yoneda M, Yamamoto N, Okano H, Takei Y, Ito M, Kasai C, Inoue H, Takase K (2013). The expression and function of Toll-like receptors 3 and 9 in human colon carcinoma. Oncol. Rep. 29:1737-1743.
- Perera PF (2000). Molecular Epidemiology: On the path to prevention? J. Natl. Cancer Institute 92(8):602-612.
- Pimentel-Nunes P, Teixeira AL, Pereira C, Gomes M, Brandao C, Rodrigues C, Goncalves N, Boal-Carvalho I, Roncon-Albuquerque R Jr, Moreira-Dias L, Leite-Moreira AF, Medeiros R, Dinis-Ribeiro M (2013). Functional polymorphisms of Toll-like receptors 2 and 4 alter the risk for colorectal carcinoma in Europeans. Dig. Liver Dis. J. 45:63-69.
- Polk DB, Peek RM Jr (2010). Helicobacter pylori: gastric cancer and beyond. Nature Rev. Cancer 10:403-414.
- Pisters PWT, Lee JE, Vauthey JN, Charnsangavej C, Evans DB (2001). Laparoscopy in the staging of pancreatic cancer. Br. J. Surg. 88(3):325-337.
- Rogler G (2014). Chronic ulcerative colitis and colorectal cancer. Cancer Lett. 345:235-241.

- Rugge M, Capelle LG, Cappellesso R, Nitti D, Kuipers EJ (2013). Precancerous lesions in the stomach: from biology to clinical patient management. Best Pract. Res. Clin. Gastroenterol. 27(2):205-223.
- Rustgi AK, El-Serag HB (2014). Esophageal carcinoma. N. Engl. J. Med. 371:2499-2509.
- Shigaki H, Baba Y, Watanabe M, Iwagami S, Miyake K, Ishimoto T, Iwatsuki M, Baba H (2012). LINE-1 hypomethylation in noncancerous esophageal mucosae is associated with smoking history. Ann. Surg. Oncol. 19:4238-4243.
- Suggars C (2000). Bowel Cancer. Encyclopedia. pp. 127-129.
- Theon A (2000). Practical radiation therapy in Textbook of Veterinary Internal Medicine. Volume 1, 5th Edition. W. B. Saunders Company. pp. 484-489.
- Todoroki I (2001). Treatment strategy for patients with middle and lower third bile duct cancer. Br. J. Surg. 88(3):364-370.
- Tsukamoto F, Miyoshi Y, Egawa C, Kasugai T, Takami S, Inazawa J, Noguchi S (2001). Clinicopathologic analysis of breast carcinoma with chromosomal aneusomy detected by fluorescence in situ hybridization. Cancer Cytopathol. 93(2):165-170.
- Uehara T, Ma D, Yao Y, Lynch JP, Morales K, Ziober A, Feldman M, Ota H, Sepulveda AR (2013). H. pylori infection is associated with DNA damage of Lgr5-positive epithelial stem cells in the stomach of patients with gastric cancer. Dig. Dis. Sci. 58:140-149.
- Xiong H, Du W, Sun TT, Lin YW, Wang JL, Hong J, Fang JY (2014). A positive feedback loop between STAT3 and cyclooxygenase-2 gene may contribute to Helicobacter pylori-associated human gastric tumorigenesis. Int. J. Cancer 134:2030-2040.
- Yamada T, Alpers DH (2009). Textbook of gastroenterology (5th edition). Chichester, West Sussex: Blackwell Publication. pp. 603, 1028.
- Yan BM, Kaplan GG, Urbanski S, Nash CL, Beck PL (2008). Epidemiology of gastrointestinal stromal tumors in a defined Canadian Health Region: a population-based study. Int. J. Surg. Pathol. 16(3):241-250.
- Yang C (2000). Adenovirus-mediated p14 ARF Gene Transfer in Human Mesothelioma cells. J. Natl. Cancer Institute 92(8):636-641.
- Yang H, Wang B, Yan J, Wang T, Zhou XN, Wen HY, Zhu XM (2014). Toll-like receptor 2 promotes invasion by SGC-7901 human gastric carcinoma cells and is associated with gastric carcinoma metastasis. Ann. Clin. Lab. Sci. 44:158-166.
- Yang S, Wu S, Huang Y, Shao Y, Chen XY, Xian L, Zheng J, Wen Y, Chen X, Li H, Yang C (2012). Screening for oesophageal cancer. The Cochrane database of systematic reviews, 12: CD007883. Available at:

http://onlinelibrary.wiley.com/doi/10.1002/14651858.CD007883.pub2/pdf

Journal of Cancer Research and Experimental Oncology

Related Journals Published by Academic Journals

International Journal of Medicine and Medical Sciences
 Journal of Medicinal Plant Research
 Journal of Dentistry and Oral Hygiene
 African Journal of Pharmacy and Pharmacology
 Journal of Clinical Medicine and Research
 Clinical Reviews and Opinions
 Medical Practice and Reviews

academicJournals